Acta Crystallographica Section C
Crystal Structure

Communications

ISSN 0108-2701

$\mathrm{KMo}_{\mathbf{5}} \mathrm{O}_{\mathbf{1 3}}$ and $\mathrm{KNb}_{1.76} \mathbf{S b}_{\mathbf{3 . 2 4}} \mathrm{O}_{\mathbf{1 3}}$

Mohamed Mongi Ftini,* Mohamed Krifa and Haddad Amor

Département de Chimie, Faculté des Sciences de Monastir, 5000 Monastir, Tunisia Correspondence e-mail: mohamedmongi@yahoo.fr

Received 3 April 2002
Accepted 29 April 2002
Online 20 July 2002

The title compounds, potassium pentamolybdenum oxide, $\mathrm{KMo}_{5} \mathrm{O}_{13}$, and potassium niobate antimonate or potassium niobium antimony oxide $(1 / 1.76 / 3.24), \mathrm{KNb}_{1.76} \mathrm{Sb}_{3.24} \mathrm{O}_{13}$, were synthesized by solid-state reactions and are isomorphous in space group Cmcm. The structure of the Mo complex has three unique Mo atoms and consists of MoO_{6} octahedra sharing edges to form $\mathrm{Mo}_{2} \mathrm{O}_{6}$ pairs and $\mathrm{Mo}_{3} \mathrm{O}_{9}$ triplets, which, in turn, form layers by sharing corners. These layers are linked together in the [100] direction, yielding a three-dimensional network similar to that of $\mathrm{KSb}_{5} \mathrm{O}_{13}$. This framework delimits interconnected tunnels, running approximately along the [110] and [110] directions, in which K^{+}ions are located. In the isomorphous $\mathrm{KNb}_{1.76} \mathrm{Sb}_{3.24} \mathrm{O}_{13}$ structure, one of the Mo sites in $\mathrm{KMo}_{5} \mathrm{O}_{13}$ is replaced by Sb and the other two Mo sites have been replaced by $\mathrm{Nb} / \mathrm{Sb}$.

Comment

$\mathrm{KMo}_{5} \mathrm{O}_{13}$ crystallizes in the orthorhombic space group Cmcm and is isotypic with $\mathrm{KSb}_{5} \mathrm{O}_{13}$ (Bodenstein et al., 1983). The structure possesses a three-dimensional network, which can be described by the succession of MoO_{6} octahedra sharing edges to form [Mo2Mo1Mo2] O_{9} triplets. These triplets are associated by sharing O 1 corners, yielding zigzag chains running along the [001] direction. These chains are, in turn, associated by sharing axial oxygen corners, with pairs of $\mathrm{Mo}_{2} \mathrm{O}_{6}$ octahedra sharing edges to form layers parallel to the (100) plane (Fig. 1).

In the [100] direction, these layers are associated with an $A B A$ ordering. Each $\mathrm{Mo}_{2} \mathrm{O}_{6}$ pair of one layer links two [Mo2Mo1Mo2]O ${ }_{9}$ triplets of the two neighbouring layers by sharing each of its three equatorial oxygen corners with the axial corners of each triplet.

This arrangement of octahedra generates interconnected tunnels, parallel to the [110] and [$\overline{1} 10$] directions, in which the K^{+}ions are located (Fig. 2).

In the structure of $\mathrm{KMo}_{5} \mathrm{O}_{13}$, all $\mathrm{Mo}-\mathrm{O}$ bond distances are similar to those customarily encountered with Mo^{v} and O .

Figure 1
A layer of the $\mathrm{KNb}_{1.76} \mathrm{Sb}_{3.24} \mathrm{O}_{13}$ structure (similar to the $\mathrm{KMo}_{5} \mathrm{O}_{13}$ structure), viewed along the [100] direction. The ${\mathrm{Sb} 1 \mathrm{O}_{6}}^{0}$ octahedra ($\mathrm{Mo}_{1} \mathrm{O}_{6}$ octahedra in the $\mathrm{KMo}_{5} \mathrm{O}_{13}$ structure) are hatched, and the $(\mathrm{Nb} 2, \mathrm{Sb} 2) \mathrm{O}_{6}\left(\mathrm{Mo} 2\right.$ in $\left.\mathrm{KMo}_{5} \mathrm{O}_{13}\right)$ and $(\mathrm{Nb} 3, \mathrm{Sb} 3) \mathrm{O}_{6}\left(\mathrm{Mo} 3\right.$ in $\left.\mathrm{KMo}_{5} \mathrm{O}_{13}\right)$ octahedra are grey. Open circles denote K atoms.

However, we note the existence of longer bond distances for Mo1-O4, Mo2-O4 and Mo3-O4 (Table 1) that can be explained by the sharing of atom O 4 with the three Mo atoms (Mo1, Mo2 and Mo3). This makes the interaction between the metal atoms and the O atom weaker. The K^{+}ions are coordinated by seven O atoms.

The crystal structure of $\mathrm{KNb}_{1.76} \mathrm{Sb}_{3.24} \mathrm{O}_{13}$ is isomorphous with that of $\mathrm{KMo}_{5} \mathrm{O}_{13}$ (Table 2). The characteristic feature of

Figure 2
A projection of the structures of $\mathrm{KNb}_{1.76} \mathrm{Sb}_{3.24} \mathrm{O}_{13}$ (similar to the $\mathrm{KMo}_{5} \mathrm{O}_{13}$ structure) along the [110] direction, showing the tunnels. The shading key is the same as for Fig. 1.
this structure is the double occupancy of sites 2 and 3 by Sb and Nb atoms; the occupancies of the Sb and Nb atoms in both sites are 0.56 and 0.44 , respectively.

For both compounds, atom O 2 lies on a general position, atom O 3 lies on a twofold axis, K and O 1 have mm symmetry, Mo1 and Sb 1 have $2 / m$ symmetry and all other atoms have m symmetry.

Experimental

Single crystals of $\mathrm{KMo}_{5} \mathrm{O}_{13}$ were prepared from a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$, in a molar ratio of 5:1:5. The mixture was ground, heated in a platinum crucible at 1073 K for 40 h and then cooled to room temperature at a rate of $0.1 \mathrm{~K} \mathrm{~min}^{-1}$. Colourless plates were extracted from the boron glass using hot water. Qualitative analysis of the sample by electron microscope probe revealed it to contain K and Mo.

Transparent and colourless single crystals of $\mathrm{KNb}_{1.76} \mathrm{Sb}_{3.24} \mathrm{O}_{13}$ were prepared from a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Sb}_{2} \mathrm{O}_{3}$ and $\mathrm{Nb}_{2} \mathrm{O}_{5}$, in a molar ratio of 5:2:2. The powder was ground and homogenized with boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ as a flux, then heated in a porcelain crucible in air to 1273 K . This temperature was maintained for 20 h , then the mixture was cooled to 773 K at a rate of $6 \mathrm{~K} \mathrm{~h}^{-1}$ and held at that temperature for 2 h , before being cooled to room temperature at a rate of 30 K h^{-1}. Single crystals were extracted from the boron glass using hot water. Qualitative analysis of the single crystals by electron microscope probe revealed them to contain K, Nb and Sb .

Compound (I)

Crystal data

$\mathrm{KMo}_{5} \mathrm{O}_{13}$

$M_{r}=726.79$
Orthorhombic, Cmcm
$a=6.6027$ (10) £
$b=8.9552(10) \AA$
$c=16.844(2) \AA$
$V=996.0(2) \AA^{3}$
$Z=4$
$D_{x}=4.847 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.601, T_{\text {max }}=0.910$
2790 measured reflections
812 independent reflections
740 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.100$
$S=1.22$
812 reflections
58 parameters

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=9.1-14.0^{\circ}$
$\mu=6.62 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless $0.09 \times 0.07 \times 0.02 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.008 \\
& \theta_{\max }=30.0^{\circ} \\
& h=-1 \rightarrow 9 \\
& k=0 \rightarrow 12 \\
& l=0 \rightarrow 23 \\
& 2 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: } 0.6 \%
\end{aligned}
$$

Table 1
Selected interatomic distances (\AA) for (I).

Mo1-Mo2 ${ }^{\text {i }}$	3.1198 (7)	Mo2-O6	1.989 (7)
$\mathrm{Mo} 1-\mathrm{O}^{\text {i }}$	2.054 (8)	Mo3-O2	1.917 (5)
$\mathrm{Mo} 1-\mathrm{O} 4{ }^{\text {i }}$	2.026 (7)	$\mathrm{Mo3}-\mathrm{O}^{\text {iv }}$	2.073 (5)
$\mathrm{Mo} 1-\mathrm{O} 6^{\text {i }}$	1.909 (7)	Mo3-O4	2.046 (8)
$\mathrm{Mo} 2-\mathrm{O} 1$	1.921 (3)	Mo3-O5	1.937 (8)
$\mathrm{Mo} 2-\mathrm{O} 2^{\text {iii }}$	1.961 (6)	$\mathrm{K}-\mathrm{O} 1^{\text {i }}$	2.826 (12)
Mo2-O4	2.174 (8)	$\mathrm{K}-\mathrm{O} 2^{\text {vi }}$	2.727 (6)
$\mathrm{Mo} 2-\mathrm{O} 5^{\text {ii }}$	1.934 (7)	$\mathrm{K}-\mathrm{Ob}^{\text {v }}$	2.636 (7)

Compound (II)

Crystal data
$\mathrm{KNb}_{1.76} \mathrm{Sb}_{3.24} \mathrm{O}_{13}$
$M_{r}=804.67$
Orthorhombic, Cmcm
$a=6.697$ (1) £
$b=9.027$ (1) \AA
$c=17.047$ (2) \AA
$V=1030.6(2) \AA^{3}$
$Z=4$
$D_{x}=5.186 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=10.0-14.5^{\circ}$
$\mu=10.74 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, colourless
$0.20 \times 0.05 \times 0.04 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.567, T_{\text {max }}=0.643$
832 measured reflections
832 independent reflections
743 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=29.9^{\circ}$
$h=-9 \rightarrow 0$
$k=0 \rightarrow 12$
$l=-23 \rightarrow 0$
2 standard reflections frequency: 120 min

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.072$
$S=1.18$
832 reflections
66 parameters

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0389 P)^{2}\right. \\
& +3.9495 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=1.34 \mathrm{e}^{\circ}{ }^{-3} \\
& \Delta \rho_{\max }=1.34 \mathrm{e}^{2} \AA_{\text {min }}=-1.53 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00129 \text { (12) }
\end{aligned}
$$

Table 2
Selected interatomic distances (A) for (II).

Sb1-O3	2.061 (4)	Sb2-O6	1.98 (2)
$\mathrm{Sb} 1-\mathrm{O} 4^{\text {i }}$	2.030 (4)	$\mathrm{Nb} 3-\mathrm{O} 2^{\text {iv }}$	1.858 (12)
Sb1-O6	1.924 (4)	$\mathrm{Nb} 3-\mathrm{O}^{\text {v }}$	2.142 (14)
$\mathrm{Nb} 2-\mathrm{O} 1$	1.89 (6)	Nb3-O4	1.984 (17)
$\mathrm{Nb} 2-\mathrm{O} 2{ }^{\text {iii }}$	1.987 (6)	Nb3-O5	2.044 (15)
$\mathrm{Nb} 2-\mathrm{O} 4$	2.22 (6)	$\mathrm{Sb3}-\mathrm{O} 2^{\text {iv }}$	1.921 (8)
$\mathrm{Nb} 2-\mathrm{O} 5^{\text {ii }}$	1.89 (4)	Sb3-O3v	2.076 (9)
Nb2-O6	2.02 (4)	Sb3-O4	2.112 (11)
Sb2-O1	1.96 (3)	Sb3-O5	1.900 (11)
$\mathrm{Sb} 2-\mathrm{O} 2^{\text {iii }}$	1.980 (3)	$\mathrm{K}-\mathrm{O} 1^{\text {i }}$	2.935 (6)
Sb2-O4	2.14 (3)	$\mathrm{K}-\mathrm{O} 2^{\text {vi }}$	2.810 (3)
$\mathrm{Sb} 2-\mathrm{O} 5^{\text {ii }}$	1.92 (2)	$\mathrm{K}-\mathrm{O}^{\text {i }}$	2.679 (4)

For both compounds, data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992); cell refinement:

inorganic compounds

CAD-4 EXPRESS, plus WinGX (Farrugia, 1999) for (I); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1369). Services for accessing these data are described at the back of the journal.

References

Bodenstein, D., Clegg, W., Jaeger, G., Jones, P. G., Rumpel, H., Schwarzmann, E. \& Sheldrick, G. M. (1983). Z. Naturforsch. Teil B, 38, 172-176.

Brandenburg, K. (1998). DIAMOND. Version 2.0. Crystal Impact GbR, Bonn, Germany.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Macíček, J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

